123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316 |
- module fundit::indicatorCalculator
- /*
- * Annulized multiple
- */
- def get_annulization_multiple(freq) {
- ret = 1;
-
- if (freq == 'd') {
- ret = 252; // We have differences here between Java and DolphinDB, Java uses 365.25 days
- } else if (freq == 'w') {
- ret = 52;
- } else if (freq == 'm') {
- ret = 12;
- } else if (freq == 'q') {
- ret = 4;
- } else if (freq == 's') {
- ret = 2;
- } else if (freq == 'a') {
- ret = 1;
- }
-
- return ret;
- }
- /*
- * Trailing Return, Standard Deviation, Skewness, Kurtosis, Max Drawdown, VaR, CVaR
- * @param ret: 收益表,需要有 entity_id, price_dat, end_date, nav
- * @param freq: 数据频率,d, w, m, q, s, a
- *
- * Create: 20240904 Joey
- * TODO: var and cvar are silightly off compared with Java version
- *
- */
- def cal_basic_performance(ret) {
- t = SELECT entity_id, max(end_date) AS end_date, max(price_date) AS price_date, min(price_date) AS min_date,
- (nav.last() \ nav.first() - 1).round(6) AS trailing_ret,
- iif(price_date.max().month()-price_date.min().month()>12,
- (nav.last() \ nav.first()).pow(365 \(max(price_date) - min(price_date)))-1,
- (nav.last() \ nav.first() - 1)).round(6) AS trailing_ret_a,
- ret.std() AS std_dev,
- ret.skew(false) AS skewness,
- ret.kurtosis(false) - 3 AS kurtosis,
- ret.min() AS wrst_month,
- max( 1 - nav \ nav.cummax() ) AS drawdown
- FROM ret
- GROUP BY entity_id;
- // var & cvar require return NOT NULL
- // NOTE: DolphinDB supports 4 different ways: normal, logNormal, historical, monteCarlo. we use historical
- t1 = SELECT entity_id, max(end_date) AS end_date, max(price_date) AS price_date,
- ret.VaR('historical', 0.95) AS var,
- ret.CVaR('historical', 0.95) AS cvar
- FROM ret
- WHERE ret.ret > - 1
- GROUP BY entity_id;
- return (SELECT * FROM t LEFT JOIN t1 ON t.entity_id = t1.entity_id AND t.end_date = t1.end_date AND t.price_date = t1.price_date);
- }
- /*
- * Lower Partial Moment
- * NOTE: risk free rate is used as Minimal Accepted Rate (MAR) here
- *
- */
- def cal_LPM(ret, risk_free_rate) {
-
- t = SELECT *, count(entity_id) AS cnt FROM ret WHERE ret > -1 CONTEXT BY entity_id;
- lpm = SELECT t.entity_id, max(t.end_date) AS end_date,
- (sum (rfr.ret - t.ret) \ (t.cnt[0])).pow(1\1) AS lpm1,
- (sum2(rfr.ret - t.ret) \ (t.cnt[0])).pow(1\2) AS lpm2,
- (sum3(rfr.ret - t.ret) \ (t.cnt[0])).pow(1\3) AS lpm3
- FROM t
- INNER JOIN risk_free_rate rfr ON t.end_date = rfr.end_date
- WHERE t.ret < rfr.ret
- GROUP BY t.entity_id;
- return lpm;
- }
- /*
- * Downside Devision, Omega Ratio, Sortino Ratio, Kappa Ratio
- *
- * TODO: Java version of Downside Deviation (LPM2) uses cnt-1 as denominator to calculate mean excess return, which might be wrong
- * Java version of Omega could be wrong because Java uses annualized returns and cnt-1
- * Java'version of Kappa could be very wrong
- *
- */
- def cal_omega_sortino_kappa(ret, risk_free_rate) {
- lpm = cal_LPM(ret, risk_free_rate);
- tb = SELECT t.entity_id,
- l.lpm2[0] AS ds_dev,
- (t.ret - rfr.ret ).mean() \ l.lpm1[0] + 1 AS omega,
- (t.ret - rfr.ret ).mean() \ l.lpm2[0] AS sortino,
- (t.ret - rfr.ret ).mean() \ l.lpm3[0] AS kappa
- FROM ret t
- INNER JOIN lpm l ON t.entity_id = l.entity_id
- INNER JOIN risk_free_rate rfr ON t.end_date = rfr.end_date
- GROUP BY t.entity_id;
- return tb;
- }
- /*
- * Alpha & Beta
- *
- */
- def cal_alpha_beta(ret, bmk_ret, risk_free) {
- t = SELECT t.entity_id, t.end_date, t.ret, bmk.ret AS ret_bmk
- FROM ret t
- INNER JOIN bmk_ret bmk ON t.end_date = bmk.end_date
- WHERE t.ret > -1
- AND bmk.ret > -1;
- beta = SELECT ret.beta(ret_bmk) AS beta FROM t GROUP BY entity_id;
- alpha = SELECT t.entity_id, (t.ret - rfr.ret).mean() - beta.beta[0] * (t.ret_bmk - rfr.ret).mean() AS alpha
- FROM t
- INNER JOIN beta beta ON t.entity_id = beta.entity_id
- INNER JOIN risk_free_rate rfr ON t.end_date = rfr.end_date
- GROUP BY t.entity_id;
- return ( SELECT * FROM beta AS b INNER JOIN alpha AS a ON a.entity_id = b.entity_id );
- }
- /*
- * Winning Ratio, Tracking Error, Information Ratio
- * TODO: Information Ratio is way off!
- * Not sure how to describe a giant number("inf"), for now 999 is used
- */
- def cal_benchmark_tracking(ret, bmk_ret) {
- t0 = SELECT t.entity_id, t.end_date, t.ret, bmk.ret AS ret_bmk, count(entity_id) AS cnt, (t.ret - bmk.ret) AS exc_ret
- FROM ret t
- INNER JOIN bmk_ret bmk ON t.end_date = bmk.end_date
- WHERE t.ret > -1
- AND bmk.ret > -1
- CONTEXT BY t.entity_id;
- t = SELECT entity_id,
- exc_ret.bucketCount(0:999, 1) \ cnt[0] AS winrate,
- exc_ret.std() AS track_error,
- exc_ret.mean() / exc_ret.std() AS info
- FROM t0 GROUP BY entity_id
- return t;
- }
- /*
- * Sharpe Ratio
- */
- def cal_sharpe(ret, std_dev, risk_free_rate) {
- sharpe = SELECT t.entity_id, (t.ret - rfr.ret).mean() / std.std_dev[0] AS sharpe
- FROM ret t
- INNER JOIN std_dev std ON t.entity_id = std.entity_id
- INNER JOIN risk_free_rate rfr ON t.end_date = rfr.end_date
- GROUP BY t.entity_id;
- return sharpe;
- }
- /*
- * Treynor Ratio
- */
- def cal_treynor(ret, risk_free_rate, beta) {
- t = SELECT *, count(entity_id) AS cnt
- FROM ret t
- INNER JOIN risk_free_rate rfr ON t.end_date = rfr.end_date
- WHERE t.ret > -1
- AND rfr.ret > -1
- CONTEXT BY t.entity_id;
-
- treynor = SELECT t.entity_id, ((1 + t.ret).prod().pow(12\iif(t.cnt[0]<12, 12, t.cnt[0])) - (1 + t.rfr_ret).prod().pow(12\iif(t.cnt[0]<12, 12, t.cnt[0]))) / beta.beta[0] AS treynor
- FROM t
- INNER JOIN beta AS beta ON t.entity_id = beta.entity_id
- GROUP BY t.entity_id;
- return treynor;
- }
- /*
- * Jensen's Alpha
- * TODO: the result is slightly off
- */
- def cal_jensen(ret, bmk_ret, risk_free_rate, beta) {
- jensen = SELECT t.entity_id, t.ret.mean() - rfr.ret.mean() - beta.beta[0] * (bmk.ret.mean() - rfr.ret.mean()) AS jensen
- FROM ret t
- INNER JOIN bmk_ret bmk ON t.end_date = bmk.end_date
- INNER JOIN risk_free_rate rfr ON t.end_date = rfr.end_date
- INNER JOIN beta beta ON t.entity_id = beta.entity_id
- GROUP BY t.entity_id;
-
- return jensen;
- }
- /*
- * Calmar Ratio
- * TODO: the result is off
- *
- */
- def cal_calmar(ret_a){
- calmar = SELECT entity_id, trailing_ret_a \ drawdown AS calmar
- FROM ret_a;
- return calmar;
- }
- /*
- * Modigliani Modigliani Measure (M2)
- * NOTE: M2 = sharpe * std(benchmark) + risk_free_rate
- */
- def cal_m2(ret, bmk_ret, risk_free_rate) {
- m2 = SELECT t.entity_id, (t.ret - rfr.ret).mean() / t.ret.std() * bmk.ret.std() + rfr.ret.mean() AS m2
- FROM ret t
- INNER JOIN bmk_ret bmk ON t.end_date = bmk.end_date
- INNER JOIN risk_free_rate rfr ON t.end_date = rfr.end_date
- GROUP BY t.entity_id;
- return m2;
- }
- /*
- * Monthly Since_inception_date Indicator Calculation
- * @param: ret: historical return table
- * index_ret: historical benchmark return table
- * risk_free: historical risk free rate table
- *
- * @return: indicators table
- *
- *
- * Create 20240904 模仿Java & python代码在Dolphin中实现,具体计算逻辑可能会有不同 Joey
- * TODO: some datapoints require more data, we need a way to disable calculation for them
- *
- */
- def cal_indicators(mutable ret, index_ret, risk_free, freq) {
- if (! freq IN ['d', 'w', 'm', 'q', 's', 'a']) return null;
- // sorting for correct first() and last() value
- ret.sortBy!(['entity_id', 'price_date'], [1, 1]);
- // 收益、标准差、偏度、峰度、最大回撤、VaR, CVaR
- rtn = cal_basic_performance(ret);
- // alpha, beta
- alpha_beta = cal_alpha_beta(ret, index_ret, risk_free);
- // 胜率、跟踪误差、信息比率
- bmk_tracking = cal_benchmark_tracking(ret, index_ret);
- // 夏普
- sharpe = cal_sharpe(ret, rtn, risk_free);
- // 特雷诺
- treynor = cal_treynor(ret, risk_free, alpha_beta);
- // 詹森指数
- jensen = cal_jensen(ret, index_ret, risk_free, alpha_beta);
- // 卡玛比率
- calmar = cal_calmar(rtn);
- // 整合后的下行标准差、欧米伽、索提诺、卡帕
- lpms = cal_omega_sortino_kappa(ret, risk_free);
- // M2
- m2 = cal_m2(ret, index_ret, risk_free);
- r = SELECT * FROM rtn a1
- LEFT JOIN alpha_beta ON a1.entity_id = alpha_beta.entity_id
- LEFT JOIN bmk_tracking ON a1.entity_id = bmk_tracking.entity_id
- LEFT JOIN sharpe ON a1.entity_id = sharpe.entity_id
- LEFT JOIN treynor ON a1.entity_id = treynor.entity_id
- LEFT JOIN jensen ON a1.entity_id = jensen.entity_id
- LEFT JOIN calmar ON a1.entity_id = calmar.entity_id
- LEFT JOIN lpms ON a1.entity_id = lpms.entity_id
- LEFT JOIN m2 ON a1.entity_id = m2.entity_id
- // 年化各数据点
- // GIPS RULE: NO annulization for data less than 1 year
- plainAnnu = get_annulization_multiple(freq);
- sqrtAnnu = sqrt(get_annulization_multiple(freq));
- r.addColumn(['ds_dev_a', 'alpha_a', 'sharpe_a', 'sortino_a', 'jensen_a', 'track_error_a', 'info_a', 'm2_a'], [DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE]);
- UPDATE r
- SET ds_dev_a = ds_dev * sqrtAnnu,
- alpha_a = alpha * plainAnnu,
- sharpe_a = sharpe * sqrtAnnu,
- sortino_a = sortino * sqrtAnnu,
- jensen_a = jensen * plainAnnu,
- track_error_a = track_error * sqrtAnnu,
- info_a = info * sqrtAnnu,
- m2_a = m2 * plainAnnu
- WHERE price_date.month() - min_date.month() >= 12;
-
- return r;
- }
|