indicatorCalculator.dos 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376
  1. module fundit::indicatorCalculator
  2. /*
  3. * Annulized multiple
  4. */
  5. def get_annulization_multiple(freq) {
  6. ret = 1;
  7. if (freq == 'd') {
  8. ret = 252; // We have differences here between Java and DolphinDB, Java uses 365.25 days
  9. } else if (freq == 'w') {
  10. ret = 52;
  11. } else if (freq == 'm') {
  12. ret = 12;
  13. } else if (freq == 'q') {
  14. ret = 4;
  15. } else if (freq == 's') {
  16. ret = 2;
  17. } else if (freq == 'a') {
  18. ret = 1;
  19. }
  20. return ret;
  21. }
  22. /*
  23. * Trailing Return, Standard Deviation, Skewness, Kurtosis, Max Drawdown, VaR, CVaR
  24. * @param ret: 收益表,需要有 entity_id, price_dat, end_date, nav
  25. * @param freq: 数据频率,d, w, m, q, s, a
  26. *
  27. * NOTE: standard deviation of Java version is noncompliant-GIPS annulized number
  28. *
  29. * Create: 20240904 Joey
  30. * TODO: var and cvar are silightly off compared with Java version
  31. *
  32. */
  33. def cal_basic_performance(ret, freq) {
  34. t = SELECT entity_id, max(end_date) AS end_date, max(price_date) AS price_date, min(price_date) AS min_date,
  35. //(nav.last() \ nav.first() - 1).round(6) AS trailing_ret,
  36. ((1+ret).prod()-1).round(6) AS trailing_ret,
  37. iif(price_date.max().month()-price_date.min().month()>12,
  38. //(nav.last() \ nav.first()).pow(365 \(max(price_date) - min(price_date)))-1,
  39. //(nav.last() \ nav.first() - 1)).round(6) AS trailing_ret_a,
  40. ((1+ret).prod()-1) * sqrt(get_annulization_multiple(freq)),
  41. ((1+ret).prod()-1)).round(6) AS trailing_ret_a,
  42. ret.std() AS std_dev,
  43. ret.skew(false) AS skewness,
  44. ret.kurtosis(false) - 3 AS kurtosis,
  45. ret.min() AS wrst_month,
  46. max( 1 - nav \ nav.cummax() ) AS drawdown
  47. FROM ret
  48. GROUP BY entity_id;
  49. // var & cvar require return NOT NULL
  50. // NOTE: DolphinDB supports 4 different ways: normal, logNormal, historical, monteCarlo. we use historical
  51. t1 = SELECT entity_id, max(end_date) AS end_date, max(price_date) AS price_date,
  52. ret.VaR('historical', 0.95) AS var,
  53. ret.CVaR('historical', 0.95) AS cvar
  54. FROM ret
  55. WHERE ret.ret > - 1
  56. GROUP BY entity_id;
  57. return (SELECT * FROM t LEFT JOIN t1 ON t.entity_id = t1.entity_id AND t.end_date = t1.end_date AND t.price_date = t1.price_date);
  58. }
  59. /*
  60. * Lower Partial Moment
  61. * NOTE: risk free rate is used as Minimal Accepted Rate (MAR) here
  62. *
  63. */
  64. def cal_LPM(ret, risk_free_rate) {
  65. t = SELECT *, count(entity_id) AS cnt FROM ret WHERE ret > -1 CONTEXT BY entity_id;
  66. lpm = SELECT t.entity_id, max(t.end_date) AS end_date,
  67. (sum (rfr.ret - t.ret) \ (t.cnt[0])).pow(1\1) AS lpm1,
  68. (sum2(rfr.ret - t.ret) \ (t.cnt[0])).pow(1\2) AS lpm2,
  69. (sum3(rfr.ret - t.ret) \ (t.cnt[0])).pow(1\3) AS lpm3
  70. FROM t
  71. INNER JOIN risk_free_rate rfr ON t.end_date = rfr.end_date
  72. WHERE t.ret < rfr.ret
  73. GROUP BY t.entity_id;
  74. return lpm;
  75. }
  76. /*
  77. * Downside Devision, Omega Ratio, Sortino Ratio, Kappa Ratio
  78. *
  79. * TODO: Java version of Downside Deviation (LPM2) uses cnt-1 as denominator to calculate mean excess return, which might be wrong
  80. * Java version of Omega could be wrong because Java uses annualized returns and cnt-1
  81. * Java'version of Kappa could be very wrong
  82. *
  83. */
  84. def cal_omega_sortino_kappa(ret, risk_free_rate) {
  85. lpm = cal_LPM(ret, risk_free_rate);
  86. tb = SELECT t.entity_id,
  87. l.lpm2[0] AS ds_dev,
  88. (t.ret - rfr.ret ).mean() \ l.lpm1[0] + 1 AS omega,
  89. (t.ret - rfr.ret ).mean() \ l.lpm2[0] AS sortino,
  90. (t.ret - rfr.ret ).mean() \ l.lpm3[0] AS kappa
  91. FROM ret t
  92. INNER JOIN lpm l ON t.entity_id = l.entity_id
  93. INNER JOIN risk_free_rate rfr ON t.end_date = rfr.end_date
  94. GROUP BY t.entity_id;
  95. return tb;
  96. }
  97. /*
  98. * Alpha & Beta
  99. * NOTE: alpha of Java version is noncompliant-GIPS annulized number
  100. */
  101. def cal_alpha_beta(ret, bmk_ret, risk_free) {
  102. t = SELECT t.entity_id, t.end_date, t.ret, bmk.ret AS ret_bmk
  103. FROM ret t
  104. INNER JOIN bmk_ret bmk ON t.end_date = bmk.end_date
  105. WHERE t.ret > -1
  106. AND bmk.ret > -1;
  107. beta = SELECT ret.beta(ret_bmk) AS beta FROM t GROUP BY entity_id;
  108. alpha = SELECT t.entity_id, (t.ret - rfr.ret).mean() - beta.beta[0] * (t.ret_bmk - rfr.ret).mean() AS alpha
  109. FROM t
  110. INNER JOIN beta beta ON t.entity_id = beta.entity_id
  111. INNER JOIN risk_free_rate rfr ON t.end_date = rfr.end_date
  112. GROUP BY t.entity_id;
  113. return ( SELECT * FROM beta AS b INNER JOIN alpha AS a ON a.entity_id = b.entity_id );
  114. }
  115. /*
  116. * Winning Ratio, Tracking Error, Information Ratio
  117. * TODO: Information Ratio is way off!
  118. * Not sure how to describe a giant number("inf"), for now 999 is used
  119. */
  120. def cal_benchmark_tracking(ret, bmk_ret) {
  121. t0 = SELECT t.entity_id, t.end_date, t.ret, bmk.ret AS ret_bmk, count(entity_id) AS cnt, (t.ret - bmk.ret) AS exc_ret
  122. FROM ret t
  123. INNER JOIN bmk_ret bmk ON t.end_date = bmk.end_date
  124. WHERE t.ret > -1
  125. AND bmk.ret > -1
  126. CONTEXT BY t.entity_id;
  127. t = SELECT entity_id,
  128. exc_ret.bucketCount(0:999, 1) \ cnt[0] AS winrate,
  129. exc_ret.std() AS track_error,
  130. exc_ret.mean() / exc_ret.std() AS info
  131. FROM t0 GROUP BY entity_id
  132. return t;
  133. }
  134. /*
  135. * Sharpe Ratio
  136. * NOTE: Java version is noncompliant-GIPS annulized number
  137. */
  138. def cal_sharpe(ret, std_dev, risk_free_rate) {
  139. sharpe = SELECT t.entity_id, (t.ret - rfr.ret).mean() / std.std_dev[0] AS sharpe
  140. FROM ret t
  141. INNER JOIN std_dev std ON t.entity_id = std.entity_id
  142. INNER JOIN risk_free_rate rfr ON t.end_date = rfr.end_date
  143. WHERE std.std_dev[0] <> 0
  144. GROUP BY t.entity_id;
  145. return sharpe;
  146. }
  147. /*
  148. * Treynor Ratio
  149. */
  150. def cal_treynor(ret, risk_free_rate, beta) {
  151. t = SELECT *, count(entity_id) AS cnt
  152. FROM ret t
  153. INNER JOIN risk_free_rate rfr ON t.end_date = rfr.end_date
  154. WHERE t.ret > -1
  155. AND rfr.ret > -1
  156. CONTEXT BY t.entity_id;
  157. treynor = SELECT t.entity_id, ((1 + t.ret).prod().pow(12\iif(t.cnt[0]<12, 12, t.cnt[0])) - (1 + t.rfr_ret).prod().pow(12\iif(t.cnt[0]<12, 12, t.cnt[0]))) / beta.beta[0] AS treynor
  158. FROM t
  159. INNER JOIN beta AS beta ON t.entity_id = beta.entity_id
  160. GROUP BY t.entity_id;
  161. return treynor;
  162. }
  163. /*
  164. * Jensen's Alpha
  165. * TODO: the result is slightly off
  166. */
  167. def cal_jensen(ret, bmk_ret, risk_free_rate, beta) {
  168. jensen = SELECT t.entity_id, t.ret.mean() - rfr.ret.mean() - beta.beta[0] * (bmk.ret.mean() - rfr.ret.mean()) AS jensen
  169. FROM ret t
  170. INNER JOIN bmk_ret bmk ON t.end_date = bmk.end_date
  171. INNER JOIN risk_free_rate rfr ON t.end_date = rfr.end_date
  172. INNER JOIN beta beta ON t.entity_id = beta.entity_id
  173. GROUP BY t.entity_id;
  174. return jensen;
  175. }
  176. /*
  177. * Calmar Ratio
  178. * TODO: the result is off
  179. *
  180. */
  181. def cal_calmar(ret_a){
  182. calmar = SELECT entity_id, trailing_ret_a \ drawdown AS calmar
  183. FROM ret_a;
  184. return calmar;
  185. }
  186. /*
  187. * Modigliani Modigliani Measure (M2)
  188. * NOTE: M2 = sharpe * std(benchmark) + risk_free_rate
  189. * NOTE: Java version is noncompliant-GIPS annulized number
  190. */
  191. def cal_m2(ret, bmk_ret, risk_free_rate) {
  192. m2 = SELECT t.entity_id, (t.ret - rfr.ret).mean() / t.ret.std() * bmk.ret.std() + rfr.ret.mean() AS m2
  193. FROM ret t
  194. INNER JOIN bmk_ret bmk ON t.end_date = bmk.end_date
  195. INNER JOIN risk_free_rate rfr ON t.end_date = rfr.end_date
  196. GROUP BY t.entity_id;
  197. return m2;
  198. }
  199. /*
  200. * Monthly Since_inception_date Indicator Calculation
  201. * @param: ret <TABLE>: 收益表,NEED COLUMNS entity_id, price_dat, end_date, nav
  202. * @param index_ret <TABLE>: historical benchmark return table, NEED COLUMNS fund_id, end_date, ret
  203. * @param risk_free <TABLE>: historical risk free rate table, NEED COLUMNS fund_id, end_date, ret
  204. * @param freq <CHAR>: 数据频率,d, w, m, q, s, a
  205. *
  206. * @return: indicators table
  207. *
  208. *
  209. * Create 20240904 模仿Java & python代码在Dolphin中实现,具体计算逻辑可能会有不同 Joey
  210. * TODO: some datapoints require more data, we need a way to disable calculation for them
  211. *
  212. */
  213. def cal_indicators(mutable ret, index_ret, risk_free, freq) {
  214. if (! freq IN ['d', 'w', 'm', 'q', 's', 'a']) return null;
  215. // sorting for correct first() and last() value
  216. ret.sortBy!(['entity_id', 'price_date'], [1, 1]);
  217. // 收益、标准差、偏度、峰度、最大回撤、VaR, CVaR
  218. rtn = cal_basic_performance(ret, freq);
  219. // alpha, beta
  220. alpha_beta = cal_alpha_beta(ret, index_ret, risk_free);
  221. // 胜率、跟踪误差、信息比率
  222. bmk_tracking = cal_benchmark_tracking(ret, index_ret);
  223. // 夏普
  224. sharpe = cal_sharpe(ret, rtn, risk_free);
  225. // 特雷诺
  226. treynor = cal_treynor(ret, risk_free, alpha_beta);
  227. // 詹森指数
  228. jensen = cal_jensen(ret, index_ret, risk_free, alpha_beta);
  229. // 卡玛比率
  230. calmar = cal_calmar(rtn);
  231. // 整合后的下行标准差、欧米伽、索提诺、卡帕
  232. lpms = cal_omega_sortino_kappa(ret, risk_free);
  233. // M2
  234. m2 = cal_m2(ret, index_ret, risk_free);
  235. r = SELECT * FROM rtn a1
  236. LEFT JOIN alpha_beta ON a1.entity_id = alpha_beta.entity_id
  237. LEFT JOIN bmk_tracking ON a1.entity_id = bmk_tracking.entity_id
  238. LEFT JOIN sharpe ON a1.entity_id = sharpe.entity_id
  239. LEFT JOIN treynor ON a1.entity_id = treynor.entity_id
  240. LEFT JOIN jensen ON a1.entity_id = jensen.entity_id
  241. LEFT JOIN calmar ON a1.entity_id = calmar.entity_id
  242. LEFT JOIN lpms ON a1.entity_id = lpms.entity_id
  243. LEFT JOIN m2 ON a1.entity_id = m2.entity_id
  244. // 年化各数据点
  245. // GIPS RULE: NO annulization for data less than 1 year
  246. plainAnnu = get_annulization_multiple(freq);
  247. sqrtAnnu = sqrt(get_annulization_multiple(freq));
  248. r.addColumn(['std_dev_a', 'ds_dev_a', 'alpha_a', 'sharpe_a', 'sortino_a', 'jensen_a', 'track_error_a', 'info_a', 'm2_a'],
  249. [DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE]);
  250. UPDATE r
  251. SET std_dev_a = std_dev * iif(price_date.month() - min_date.month() >= 11, sqrtAnnu, 1),
  252. ds_dev_a = ds_dev * iif(price_date.month() - min_date.month() >= 11, sqrtAnnu, 1),
  253. alpha_a = alpha * iif(price_date.month() - min_date.month() >= 11, plainAnnu, 1),
  254. sharpe_a = sharpe * iif(price_date.month() - min_date.month() >= 11, sqrtAnnu, 1),
  255. sortino_a = sortino * iif(price_date.month() - min_date.month() >= 11, sqrtAnnu, 1),
  256. jensen_a = jensen * iif(price_date.month() - min_date.month() >= 11, plainAnnu, 1),
  257. track_error_a = track_error * iif(price_date.month() - min_date.month() >= 11, sqrtAnnu, 1),
  258. info_a = info * iif(price_date.month() - min_date.month() >= 11, sqrtAnnu, 1),
  259. m2_a = m2 * iif(price_date.month() - min_date.month() >= 11, plainAnnu, 1);
  260. return r;
  261. }
  262. /*
  263. * Calculate trailing 6m, ytd, 1y, 2y, 3y, 4y, 5y, 10y and since inception indicators
  264. *
  265. * @param: ret <TABLE>: 收益表,NEED COLUMNS entity_id, price_dat, end_date, nav
  266. * @param: end_day <DATE>: 计算截止日期
  267. * @param index_ret <TABLE>: historical benchmark return table, NEED COLUMNS fund_id, end_date, ret
  268. * @param risk_free <TABLE>: historical risk free rate table, NEED COLUMNS fund_id, end_date, ret
  269. * @param freq <CHAR>: 数据频率,d, w, m, q, s, a
  270. *
  271. */
  272. def cal_all_trailing_indicators(mutable tb_ret, end_day, bmk_ret, risk_free_rate, freq) {
  273. // since inception
  274. r_incep = cal_indicators(tb_ret, bmk_ret, risk_free_rate, 'm');
  275. // ytd
  276. tb_ret_ytd = SELECT * FROM tb_ret WHERE end_date >= end_day.yearBegin().month();
  277. r_ytd = cal_indicators(tb_ret_ytd, bmk_ret, risk_free_rate, 'm');
  278. // trailing 6m
  279. tb_ret_6m = SELECT * FROM tb_ret WHERE end_date > end_day.month()-6;
  280. r_6m = cal_indicators(tb_ret_6m, bmk_ret, risk_free_rate, 'm');
  281. // trailing 1y
  282. tb_ret_1y = SELECT * FROM tb_ret WHERE end_date > end_day.month()-12;
  283. r_1y = cal_indicators(tb_ret_1y, bmk_ret, risk_free_rate, 'm');
  284. // trailing 2y
  285. tb_ret_2y = SELECT * FROM tb_ret WHERE end_date > end_day.month()-24;
  286. r_2y = cal_indicators(tb_ret_2y, bmk_ret, risk_free_rate, 'm');
  287. // trailing 3y
  288. tb_ret_3y = SELECT * FROM tb_ret WHERE end_date > end_day.month()-36;
  289. r_3y = cal_indicators(tb_ret_3y, bmk_ret, risk_free_rate, 'm');
  290. // trailing 4y
  291. tb_ret_4y = SELECT * FROM tb_ret WHERE end_date > end_day.month()-48;
  292. r_4y = cal_indicators(tb_ret_4y, bmk_ret, risk_free_rate, 'm');
  293. // trailing 5y
  294. tb_ret_5y = SELECT * FROM tb_ret WHERE end_date > end_day.month()-60;
  295. r_5y = cal_indicators(tb_ret_5y, bmk_ret, risk_free_rate, 'm');
  296. // trailing 10y
  297. tb_ret_10y = SELECT * FROM tb_ret WHERE end_date > end_day.month()-120;
  298. r_10y = cal_indicators(tb_ret_10y, bmk_ret, risk_free_rate, 'm');
  299. return r_incep, r_ytd, r_6m, r_1y, r_2y, r_3y, r_4y, r_5y, r_10y;
  300. }